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1 Introduction: Image modeling

Image modeling, namely, finding a suitable way to describe and represent images, is
perhaps the most fundamental and crucial step for the whole ladder of tasks in image
and low-level vision analysis. The underlying philosophy is: the way we process and
analyze images depends very much on what we believe (or model) they are.

A household analogy would be the prediction of the stock price. If it is believed
to be a smooth function of dates, then tomorrow’s price can be well predicted by those
of today and yesterday by simple polynomial interpolations. But if more realistically,
the price stream is modeled as a stochastic process, then the prediction has to be based
on the features of such process. The interaction between image processing and image
modeling is very much the same story.

As of February, 2002, the Google search engine returns about 50,000,000 docu-
ments containing the word “image.” But this broad usage does not mean that we have
already had a rigorous mathematical definition. In fact, even the Webster’s Dictio-
nary kicks the definition of “image” onto that of “picture,” and then explains the latter
vaguely as “a representation made by painting, drawing, or photography,” which says
nothing but only how “images” or “pictures” are formed. It reminds us the concept of
weight. Mankind had blindly used it for thousands of years until the giants Newton and
Einstein first tried to decipher the meaning of gravity.

The mathematical challenge of image modeling roots in the diversity and complex-
ity of images, from the rich geometric structures to a large dynamic range of scales.
Most of us do not consider it a good idea to lazily vote for any function���� �� (equally)
as an image. But it seems that no one has yet seized the right tool to characterize the
boundary between images and non-images. Perhaps there is no such sharp boundary
at all. That is expressed by the well known Gibbs’ Random Fields model of Geman
and Geman [GG84]. Based on filtering and statistical learning, the model has been de-
veloped more generally by Zhu, Wu, and Mumford [ZWM97, ZM97]. Such stochastic
approach for image modeling gets more theoretically matured in the very recent work
of Mumford and Gidas [MG01] based on infinitely divisible law and axiomatization.

Away from the stochastic theory of images, is the exploration of possible deter-
ministic image models. Such transition is perhaps best described by Yves Meyer’s
very recent “� � �” notion [Mey01]. Here ���� �� represents the rapidly oscillatory
component (noise or textures), or a stochastic sampling, while ���� �� captures the
deterministic features.

In the very beginning of computer vision and artificial intelligence, Marr and his
colleagues [MH80] already noticed the importance of edges for image understanding
and visual communication. Edges are indeed an intrinsic feature for images since they
define, segment, and correlate individual objects [NMS93]. Thus the deterministic
component � should at least allow edges, or, one dimensional singularities, and cannot
be a traditional Sobolev function. Mumford and Shah [MS89] singled out these edge
features and proposed the famous object-edge free boundary image model. Recently
Donoho and his students have developed geometric wavelets such as curvelets to model
the component� (while leaving the oscillatory component � resonant with conventional
wavelets) [Don00].

Is there a simple linear functional space that legalizes edges and is easy to work
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with, but is not too loose to include too many “uninteresting” images. The answer
was discovered by Rudin, Osher, and Fatemi [ROF92, RO94] in 1992. It is the Ba-
nach space of functions with bounded variations (BV). Ever since, the model has wit-
nessed many applications in image denoising, deblurring, interpolation and inpainting,
super-resolution and zooming, error concealment in wireless image transmission, med-
ical imaging, and various inverse problems (see, for examples, [ROF92, DS96, VO96,
CW98, CS01d, COS01, CS01a]).

The current paper attempts to give an overview on the theory and applications of
Rudin, Osher, and Fatemi’s BV image model for image restoration, with a special
emphasis on our recent work of employing the BV image model as an image interpolant
for the inpainting problem [CS01a, CS01b, CS01c, CS02].

Section II briefly lays out the Bayesian foundation for variational image restora-
tion. Section III introduces the original Rudin-Osher-Fatemi TV restoration model.
We present both its theory and computation. In section IV, we explain our recent effort
on applying the BV image model as an efficient image interpolant for the inpainting
problem, highlighted with several computational examples. The last section discusses
two extra issues related to the BV image model and then concludes the paper.

2 Bayesian Framework for Image Restoration

If there indeed exists the most important principle in the entire field of image and vision
analysis, it has to be the Bayesian rule.

Many problems in image and vision analysis can be set up as follows. We are to
infer some feature or patten (vector or continuous field) � from a given measured or
observed data field ��. For example, for image restoration, �� corresponds to a given
corrupted image ��, which is often snowed by noise, blurred by de-focusing or medium
scattering, or has certain data missing during the transmission process; and � denotes
the ideal image � one would get without all those distortion effects. For vision analysis,
�� may represent the 2-D image �, while � denotes the 3-D configuration parameters
(illuminance and reflectance, etc.) [Ker].

The ideal inference of � from �� is naturally the one that maximizes the posterior
probability ������ ����. According to the Bayes formula

������ ���� �
��������� � ������ �

��������
�

it suffices to maximize the product of the data model ��������� � and the prior model
������ �, since the denominator is merely a normalization constant once � � is given.
The prior model ������ � specifies how often a pattern � can be observed a priori ,
i.e., independent of any observation made. The data model ������ ��� � then reveals
the likelihood for �� being generated from a given pattern � .

If one has the a priori evidence for the importance of geometric structures in the
pattern distribution ������ � (such as edges and their geometry for image understand-
ing), then it is more convenient to work with the “energy” form of the Bayesian method,
as Mumford did for various segmentation models [Mum94]. This is at least formally
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achieved via Gibbs’ formula in statistical mechanics [Gib02]: the likelihood for a con-
figuration � being observed is associated to its energy �	� 
 by

������ � �
�

	
�
�

�
�
�	� 



�

�
�

where 
 and � denote the Boltzmann constant and absolute temperature, and 	 the
partition function over all the permissible configurations. The meaning of the energy
�	���� 
 is similarly defined, though lacking a rigorous counterpart in statistical me-
chanics. Therefore, the Bayesian method leads to the energy minimization problem

���
�

�	� 
 ��	���� 
�

In the literature of deterministic inverse problems, this corresponds to the celebrated
idea of Tikhonov regularization [Tik63]. The Bayesian approach is more general in
many aspects.

In terms of image restoration �� � �, we are to minimize

�	�
 ��	����
� (1)

The data model � � �� depends on the real physical imaging process. One popular
and useful choice as in astronomic and many medical imaging processes is blurring
followed by noising [ROF92, CW98]:

�� � 
�� ��

where � denotes additive noise, and the linear operator 
 models the blurring process


���� �

�
�


��� ���������


 is lowpass in the sense that 
� � �. As well known in signal processing, if 

is shift-invariant (or spatially homogeneous), then it has to be an ordinary filter �����
via the convolution operator: 
��� �� � ��� � ��. Although realistic blurring factors
fluctuate randomly, most often we observe that 
 is fixed deterministically. We shall
do so in this paper as well. Modeling the white noise by Gaussian, we easily obtain the
energy for the data model (up to a multiplier):

�	����
 �

�
�

�
����� ������
�

�����
��� (2)

where ����� is the noise variance at pixel �, and is a constant for homogeneous
noise. Generally ������� simply contributes as a positive weight ����, and the en-
ergy presents a weighted least square fitting as discussed in Strang [Str93].

Other blurring and noising models are also possible depending on the real imaging
processes. For example, Rudin and Osher also studied the multiplicative noise model
in [RO94].

Therefore, the restoration quality by (1) crucially depends on the choice of the
image model �	�
. The BV image model of Rudin-Osher-Fatemi [ROF92] captures
the edge feature of images, and is perhaps the most efficient geometric image model in
terms of theoretical accessibility, computational efficiency, and applicational quality.
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3 The BV Model of Rudin, Osher, and Fatemi

3.1 Functions with bounded variation

We start with some essential mathematical theory on functions with bounded varia-
tions. We refer to the outstanding monograph by Giusti [Giu84] for more details.

Let � � �� denote the open image domain, which for most real applications bears
a rectangular shape. For each real function � � ��

������ (i.e., locally integrable), its
total variation ����� is defined in the distributional sense:

����� � ���
�����

� �����	

�
�

��� � ��� ��� (3)

where �� denotes the unit disk in ��, and the space of test functions is

��
� ��� ��� � 	all �� maps �� � �� ��� which are compactly supported
�

Since � � �������� and � � �� � �����, ����� is well defined. ����� � � since
�� is closed under reflection � � ���� ��� � ��. Suppose � is in the Sobolev space
� ������, then�� � ����� and

�

�
�

�� � �� �� �

�
�

���� � �� ���

which immediately implies that

����� �

�
�

��� ��� �

�
�

�
���� � ���� �������

It is for this reason that in BV theory, ����� is also denoted by
�
�

��� �, with the sym-

bol � reminding the conventional differentiation �, and the absence of the Lebesgue
area element �� indicating that ��� � is a general Radon measure.

The Rudin-Osher-Fatemi image model takes �	�
 � ����� from the previous
section [ROF92, RO94], and assumes that all observable images have finite variation.

The space of bounded variation is defined as

����� � 	� � � � ����� and ����� ��
�

It can be easily shown that ����� is a Banach space under the BV norm


�

� � 
�
�� �������

and it is continuously embedded in �����.
Among all the important properties, there are three ones that have helped Rudin-

Osher-Fatemi’s BV image model become easily accessible in theory, and meaningful
for applications in image and low-level vision analysis.

Lower semi-continuity of the TV norm in ����� says if �	 � � weakly in �����,
then �

�

��� � � ��� ���
	��

�
�

���	��
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In addition, the embedding ����� � ����� is compact, i.e., the unit ball of �����
is compact in �����. As well practiced in the direct method in Calculus of Variations,
these two key properties together often point to the existence of minimizers for energies
involving the TV norm. This is indeed the case in Chambolle and Lions’ work on the
TV restoration model [CL97], which will be outlined in the next section.

The third property reveals the geometric nature of the TV norm, and thus strongly
supports its application in geometry motivated vision and image analysis. It is the
co-area formula. Define the perimeter ������ of a domain � � � to be

������ �

�
�

���
���� � ����
��

which generalizes the conventional notion of length for a regular boundary ��. For
any function � � �����, the co-area formula says�

�

���� �

� �

��

����� �  � � � (4)

Here the event �� �  � denotes the domain �� � 	� � � � ���� �  
�
To better understand the formula, imagine a simple case when � � �� and  is

regular, i.e., ����� does not vanish on the entire level set � �  . Then the boundary
��� is a regular smooth curve and ������� is exactly its Euclidean length. Therefore,
in the conventional sense, the co-area formula states that

����� is a collective way to sum up the lengths of all level lines.

It is this property that brings the TV norm closer to meeting the requirement of an
ideal vision measure. Generally, human vision tends to represent curves and edges as
simple as possible for the purpose of efficient neuronal data compression and visual
communication [Don00]. Such representation is achieved by having the local small
ripples ignored or filtered out, just as having the curve lengths shortened. This is the
vision rationale for the minimization of the TV norm and the BV image model.

3.2 TV restoration: Model and theory

Section 2 and 3.1 lay out the vision and mathematical foundations for the original
restoration model of Rudin, Osher, and Fatemi [ROF92, RO94].

As in Section 2, assume that a given image �� is noisy and blurred:

�� � 
�� ��

and in addition, the ideal image � is assumed in �����. Then the Bayesian restoration
energy first proposed by Rudin, Osher, and Fatemi [ROF92, RO94] is

�	����
 � ����� ��	����
�

where the data model �	����
 is as given in (2). More explicitly, we are to minimize

�	����
 �

�
�

�����

�
�

�
�� ���
�������� (5)
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with ���� � !"�#$�������. In the original paper [ROF92], the noise is assumed to be
homogeneous, and thus ���� �  �� is a constant weight, with  taking the effect of a
Lagrange multiplier.

The existence and uniqueness of the TV restoration model in �����
�
����� were

proven by Chambolle and Lions using the direct method [CL97]. The major properties
leading to the proof are the lower semi-continuity and �� compactness as outlined in
the previous section. The basic assumptions ensuring the existence and uniqueness are

(a) (blurring model) The linear blurring operator 
 � � ���� � ����� is continuous,
lowpass: 
� � �, and injective (for uniqueness).

(b) (noise model) The noise � has mean � and variance � �, known a priori.

(c) (independence of blurring and noise) ����� �� � ��.

We should say a few more words about the last condition. In the current data model,
we have assumed that the blurring 
 and noise � are independent. Therefore, from
probability,

������� � ����
�� � ������ � �� �����
�� � ���

(If both the blurring 
 and the ideal image � are deterministic, then equality is indeed
achieved.) But from the application point of view, most often we are only given one
single observation ��, despite that �� is a random field. Therefore, the last condition is
numerically understood and inspected in the ergodic sense:

������� �
�

���

�
�

�
�� �

�

���

�
�

����

��
���

where ��� denotes the Lebesgue measure of the image domain.
Recently, Chan, Osher, and Shen has extended the TV restoration model (5) to data

that live on general graphs (the so-called digital TV ), and to “non-flat” data or image
features (such as chromaticity and orientations of optical flows) that live on Riemannian
manifolds [COS01, CS01d].

3.3 TV restoration: Computation and approximation

To computationally realize the TV restoration model (5), as first proposed by Rudin,
Osher, and Fatemi [RO94], one typically takes the steepest descent method (time march-
ing) or directly solves the associated equilibrium equation (steady solution) by iterative
methods [VO96, DV97]. Here we discuss the latter.

Formally, or assuming � in a finer space % ����, we find that the equilibrium equa-
tion for energy (5) is given by

� �

�
��

����

�
� �
���
�� ��� � �� (6)

with the Neumann adiabatic boundary condition. Here 
 � is the adjoint of 
, and
���� �  �� corresponds to the homogeneity of the noise in the original Rudin-Osher-
Fatemi model. If indeed � � % ����, then the differential equation is understood in the
weak sense as in the classical theory of elliptic equations (i.e., in �% ��� ).
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For a smooth function �, the differential term in (6) at a regular (i.e. with non-
degenerate gradient) pixel �� is exactly the curvature of the level line � � �����,
which once more reveals the geometry encoded into the model.

All the existing numerical algorithms have depended on some form of relaxation
of the TV norm. That is,

to replace
�
�

���� by
�
�

&������� ���

Here &��'� � � � �, with &���'� ( �, for ' ( � is a �� convex even function that
mollifies that original �'�, and ) is a small relaxation parameter that often models the
sensitivity of a vision system. Popular choices include

&��'� �
�
'� � )� �� �'���

and the integral of ���'� � ) � '�� � )�� with &���� � �. (Here the wedge notations
represent the ceiling and grounding operators [CL97]) Consequently, the equilibrium
equation for such a relaxation is modified to

� �

�
&��������

����
��

�
�
���
�� ��� � �� (7)

It can be shown that the solutions to these two relaxed problems are all in % ����.
Computationally, the nonlinear equation (6) is often solved iteratively by the freez-

ing technique. That is, at each step �, the next update � �	��	 solves the linearized
Poisson equation with blurring and fitting:

� �
�
*�		 ��

�
�
���
�� ��� � �� (8)

where * � &������������� ( � is the diffusivity coefficient, and is freezed at the cur-
rent step. Therefore, from the energy point of view, the update is the unique minimizer
to the elliptic energy

�
�

*�		��������

�
�

�
�� ����������

in %����. The convergence of such algorithms has been confirmed in [DV97, CL97].
Furthermore, it is even possible to endow an energy meaning to the updating of * itself:
*�	��	 � &������

�	��	�������	��	�. For instance, for the choice of &��'� � �'��, it is
easy to show that *�	��	 is the minimizer of

�
�

	
* ����	��	��� �

�

*



���

(For the other example, see Chambolle and Lions [CL97].) Therefore, in this case, the
iterative algorithm based on the freezing technique is essentially to minimize

��	�� *���
 �

�
�

	
*������ � )�� �

�

*



�� �

�
�

�
�� ���
� �������
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Unlike the original Rudin-Osher-Fatemi model [ROF92, RO94], it now contains a new
feature *, which is often called the auxiliary variable in the vision community [GR92].
We also call � the edge signature since if * is plotted as an image, then the dark (i.e.,
small *) and thin (depending on )) stripes clearly outline the edges in the image.

4 BV as an Interpolant: Image Inpainting

4.1 The problem of inpainting

The word “inpainting” is an artistic synonym for “image interpolation,” as initially
circulated among museum restoration artists, who manually recover the cracks of de-
graded ancient paintings by following as faithfully as possible the intention of their
original creators.

Recently, the concept of inpainting has been connected to many major problems
in image processing and low-level vision, such as perceptual image coding and com-
pression, and error concealment for wireless image transmission [CS01a]. We refer to
our recent survey paper [CS02] for much more details on the status of the inpainting
problem.

Traditionally, image interpolation is often restricted to problems with scattered
small-scale missing data. Thus the approaches and algorithms have been mostly de-
veloped from the viewpoints of the spectral method, filtering method, wavelets, and
radially symmetric bases, etc.. But for large-scale interpolation, or “inpainting,” these
conventional approaches do not seem to work well due to the fundamental challenge:
how to faithfully (at least visually meaningfully) recover the missing edges, i.e., the
1-dimensional singular feature of images.

Away from these classical methods, Bertalmio et al. [BSCB00] has recently intro-
duced the idea of applying transport type of high order PDEs to complete the broken
edges. The authors of the present paper then took a different approach by having the
inpainting problem embedded into the general category of image restoration problems.
As a result, our inpainting models have been based on the Bayesian framework of Sec-
tion 2. The first image model catching our attention was the BV image model of Rudin,
Osher, and Fatemi. This is the TV inpainting model that we first proposed and studied
in [CS01a].

As one shall see in the next section, TV inpainting is almost identical to the original
TV restoration model (5). The beauty lies in that the slight modification dramatically
extends its scope of applicability, and reveals many unexpected connections to other
important problems in image and low-level vision analysis, such as perceptual image
coding and super-resolution [CS01a].

After the TV inpainting was first introduced, our further recent works have demon-
strated that as a special restoration problem, inpainting does carry its own identity and
important differences from the more familiar types such as denoising and deblurring.
In [CS01c, CKS01, ES02], we have shown that the BV image model is insufficient
for large scale inpainting problems, and high order geometric image models based on
curvatures are necessary for more faithful reconstruction of partially missing edges.

Nevertheless, the BV image model still remains to be the simplest and effective
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image interpolant, and TV inpainting is one of the very few inpainting models that
allow both complete theoretical analysis and efficient computational implementation.
And even for realistic applications, it always provides a valuable lower order initial
guess for computationally expensive high order models. We now explain TV inpainting
and some of its major applications in digital image processing.

4.2 The TV inpainting model by Chan and Shen

Let � � � denote the compact inpainting domain, on which the observation � �

��



is
missing. The goal of inpainting is to recover the ideal image � on the entire domain �
based on the available portion ��

��
��


.
It is quite obvious that generally the inpainting problem is highly ill-posed: without

the input from high-level vision operators, such as symmetry detection or more gen-
eral pattern learning, it is impossible to inpaint an object that is completely missing.
However, the stroke of luck does shine in many major digital applications [CS01a]
(e.g., random packet loss in wireless image transmission, image zooming and super-
resolution, etc.) in that ��

��
��


indeed retains crucial information about ��
��



.
The generative data model for inpainting is

��
��


� �
�� ��

��


�

Under the assumptions in Section 2, it leads to the energy form

�
 	����
 �

�
��


�
�� ���
��������

with the weight ���� � �������. Let �
��� denote the zero extension of ����
��
��


onto the whole domain �, i.e.,

�
��� � ��� �
���������

Then the energy for the data model can also be written as

�
 	����
 �

�
�

�
�� ���
��
������ (9)

where ��
��
��


is extended to �� � ��
��
�

in any manner since it is wiped out by �
���
anyway.

Then Bayesian inpainting based on the BV image model is to minimize

�
	����
 �

�
�

�����

�
�

�
�� ���
��
��� ��� (10)

which is almost identical to the original TV restoration model of Rudin, Osher, and
Fatemi (5), only with an adjustment on the weight function. Consequently, they share
the same form of the PDE:

� �

�
��

����

�
�
��
�
�� ��� � �� (11)
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or for the sake of the freezing algorithm mentioned above, � �� � � with

� � 
��
��� �� � �� � *��
��

� * �
�

����
� (12)

The associated boundary condition along �� is again Neumann adiabatic.
What is the mathematical difference between the TV restoration models (5, 6) and

the TV inpainting models, caused by the almost trivial modification of the weight func-
tion? Unlike the situation when the weight function ���� �  �� ( � for all pixels,
the inpainting energy (10) is no longer strictly convex. Therefore, as shown by Chan,
Kang, and Shen [CKS01], the existence of TV inpainting in ����� is guaranteed, but
generally uniqueness is not. In terms of the iterative algorithm based on the freezing
technique, the non-uniqueness is caused by the fact that the linearized operator � � is
only semi-positive definite.

As explained in our paper [CKS01], the non-uniqueness of TV inpainting may not
be necessarily a defect of the model, but instead, an intrinsic part of the inpainting
problem itself. To certain degree, it models the uncertain situation of human deci-
sion making when the given information is generated by two or more equally possible
patterns.

All the computational methods discussed in Section 3.3 apply here too. In addition,
to increase the sparsity of the linear system for general blurring kernel 
, we have
modified the freezing iterative scheme at each step � to

	����� � ��
 �
��

�
��	��	 � ��
 �
��

���		 � ��

Figures 1 and 2 display the computational outputs for two images with simulated
digital blurring, noising, and random packet loss with:


� �
�

��


�

� � �
� � �
� � �

�
�
�


and 
� �
�

 �


�

 � ! �
�� �� ��
� ! �

�
�
�


� (13)

Here the asterisks indicate that the powers are in the convolutional sense. 
 � and 
�

simulate the continuous isotropic blurring and directional motion blurring separately.
These simulated results clearly demonstrate the power of TV inpainting for the poten-
tial market of noisy transmission of blurred images with randomly lost packets, images
from the Hubble telescope, for example [VO96, CW98].

There are also some important applications that cannot be covered by the continu-
ous language, yet made possible by the extension of the TV norm onto general graphs
by Chan, Osher, and Shen [COS01]. Zooming and perceptual image coding are such
examples that we first studied in [CS01a].

Let us discuss a simplified version of the digital zoom-in problem and the TV
inpainting approach. The goal of zoom-in is to create a �+ � �+ digital image
	���� 
 �� � ,� - � �+� from its possibly noisy coarse sampling 	������� 
�� � ,� - � +�.
Thus the weight function in this digital setting is given by

�

��� � �� ��, " ��-# �� otherwise�
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Simulated blurring and random packet loss TV deblurring and inpainting

Figure 1: TV Inpainting of a blurred image (by 
 � in (13 ) ) with simulated random
packet loss.

In the paper [CS01a], we proposed the following zoom-in model based on TV inpaint-
ing:

����	���� 
� �
�

��������

����� � ������
��


��� � (14)

where ��� denotes the digital TV norm on graphs (a model for digital domains), as
introduced in [COS01]. Figure 3 shows the computational output of the model when
applied to a test image from Caltech’s computational vision group. The comparison has
been made between the BV image model and the Sobolev one (i.e., �	�
 �

�
�
�����).

One can clearly observe that BV yields much better reconstruction in terms of the
sharpness of object boundaries.

The second non-trivial application connects inpainting to perceptual image cod-
ing, compression, and reconstruction [CS01a]. An example based on digital TV in-
painting (14) (with a different weight �
) is presented in Figure 4. We refer to our
paper [CS01a] for more details.

These examples clearly demonstrate the beauty of a good image model - it facili-
tates all processing tasks, as a lighthouse does for successful navigation.

5 Beyond BV and Conclusion

5.1 The Mumford-Shah image model

A sibling to BV images is the celebrated object-edge model of Mumford and Shah [MS89]:

��	��$
 �

�
���

�������� .%��$��
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noisy motion−blurred image with missing data TV restoration and inpainting

Figure 2: TV inpainting of a noisy blurred image (by 
 � in (13)) with simulated ran-
dom packet loss.

where%��$� is the one-dimensional Hausdorff measure of the “edge” set $, and. ( �
is a fixed weight. It is easy to see that for near-cartoon images (i.e., the jump set $ is
piecewise smooth, and ���� � � on � �$), the Mumford-Shah image model ��	��$

is equivalent to ��	�
, since the latter as a Radon measure is concentrated along the
jump set as well. The kinship between the two image models can also be seen from
a unified viewpoint based on the edge signature function * introduced in Section 3.3.
Such an approach has been well known in the vision community [GR92]. In Section
3.3, it has been established that the BV image model is approximately (controlled by
)� �) equivalent to

���	�� *
 �

�
�

�
*������ � )*� �

�

*�

�
���

Here we have replaced the original * by * � since it is positive as seen from the freezing
algorithm in Section 3.3. On the other hand, under the $-convergence approximation
theory (Ambrosio and Tortorelli [AT90, AT92]), the edge set $ in the Mumford-Shah is
also replaced by an edge “signature” function *, and the image model is approximately
equivalent to

���	�� *
 �

�
�

�
*������ � .�)��*�� �

��� *��

�)
�

�
���

Therefore, by introducing the edge signature function *, both the BV image model of
Rudin-Osher-Fatemi and the object-edge image model of Mumford and Shah belong
to the same class of coupled energies:

��	�� *
 �

�
�

�*������ � ���*��*����*�� ���

where �� is a suitable function controlled by a small parameter ), and ��� denotes
the Hessian operator.
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The original image Zoom−out by a subsampling of factor 4

The harmonic zoom−in The TV zoom−in

Figure 3: Bayesian zoom-in’s based on the BV and Sobolev image models: TV inpaint-
ing yields much sharper boundaries [CS01a] (test image from Caltech’s computational
vision group).

The Mumford-Shah image model, once computationally realized (such as by the
level-set method of Osher and Sethian [OS88], as recently studied by Tsai, Yezzi, and
Willsky [TAYW01], and Chan and Vese [CV00]), is very powerful for image denoising
and segmentation. Novel applications to the inpainting problem have been studied re-
cently by Chan and Shen [CS01a], Tsai, Yezzi, and Willsky [TAYW01], and Esedoglu
and Shen [ES02].

5.2 Gousseau and Morel: Natural images are NOT BV

This remarkable recent result of Gousseau and Morel [GM01] is the fruit of a successful
combination of statistical image study and mathematical analysis of image models.

The key is the following lower bound for the TV norm by the so called sectional
density ����� #�:

����� � /
�
�

� 	�	

�

#
�
� ����� #��#�

where ��� denotes the Lebesgue measure (or area) of the image domain, # an “area”
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The TV inpainting

The original image Edge tube from Canny’s detector

The initial guess

Figure 4: Perceptual image coding and decoding by the TV inpainting
model [CS01a](test image from Caltech’s computational vision group).

parameter, and � a quantization level of the image. Roughly speaking, for a given
image � and a quantization level �, ����� #��# denotes the number of disjoint �-“blobs”
(or �-sections) whose areas fall within 	#� #� �#
 (see [GM01] for more details). The
empirical statistics based on many natural images, obtained by the same school of
authors [AGM99], reveals the following power law:

����� #� �
!"�#$�

#�
� with . � ��

for any generic and homogeneous natural image �. Therefore,

����� � !"�#$�

� 	�	

�

�

#�����
�#�

which diverges at # � � for all . � !��.
In Meyer’s � � � language [Mey01], the result reveals that the �-component for

generic natural images contains too many small scale “blobs” (clustering controlled by
a quantization level �), which makes generally �� � �� �����.

Therefore, this negative assertion still does not cloud the positive role of Rudin-
Osher-Fatemi’s BV images in the successful modeling of the � component.
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5.3 Conclusion

A generic image seems to be the composition of two components: ���, as Meyer [Mey01]
puts it recently. Roughly speaking, � is the deterministic component, and � is the “tex-
ture” or “clutter” component [MG01], characterized by rapid oscillations but still away
from being white noise. The �-component carries a delicate correlation between space
and spatial frequencies, and as a result, statistical, spectral, and wavelets tools are ideal.
The �-component is more geometric, and embedded with the crucial information of de-
terministic and large-scale features such as edges, corners, and T-junctions. The BV
image model of Rudin, Osher and Fatemi is one of the very few successful models
for the �-component, which are both theoretically accessible and computationally ef-
ficient. For images with low textures (i.e., the ergodic variance ������ � �), such
as many indoor scenes capturing large objects, the BV image model by itself is often
sufficient for the tasks like denoising, deblurring, and inpainting. This viewpoint has
been strongly supported by various computational results.
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